
Modeling Developable Surfaces from
Arbitrary Boundary Curves

by

Kenneth Lloyd Patrick Rose

B.Math., University of Waterloo, 2005

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

August 2007

c© Kenneth Lloyd Patrick Rose 2007



ii



Abstract

Developable surfaces are surfaces that can be unfolded into the plane with
no distortion. Although ubiquitous in our everyday surroundings, there is
currently no easy way to model them on a computer. This thesis fills this
void by presenting a general method for creating developable geometry that
utilizes the connection between developable surfaces and the convex hulls of
their boundaries. Given an arbitrary, user-specified 3D polyline boundary,
our system generates a smooth discrete developable surface that interpolates
this boundary. We identify desirable properties of such surfaces, present a
practical algorithm to compute them, and extend it to handle darts and
internal singular points. We demonstrate the effectiveness of our method
through a series of examples, from architectural design to garments, using
a sketch-based interface to quickly create the boundaries.

iii



Abstract

iv



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Statement of Co-Authorship . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Developable Surfaces . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Developables from Boundaries . . . . . . . . . . . . . . . . . 4

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Ruled and Developable Surfaces . . . . . . . . . . . . . . . . 7

2.2 Gaussian Curvature under Isometric Mapping . . . . . . . . 8

2.3 Properties of Developable Surfaces . . . . . . . . . . . . . . . 9

2.4 Developable Boundary Triangulations . . . . . . . . . . . . . 11

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Developable Approximation . . . . . . . . . . . . . . . . . . . 13

3.1.1 Discrete Methods . . . . . . . . . . . . . . . . . . . . 13

v



Table of Contents

3.1.2 Continuous Methods . . . . . . . . . . . . . . . . . . 15
3.1.3 Benefits and Limitations of Approximation . . . . . . 15

3.2 Direct Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Constructing Developable Triangulations . . . . . . . . . . . 21
4.1 Developability and Convexity . . . . . . . . . . . . . . . . . . 22
4.2 Desirable Triangulation Properties . . . . . . . . . . . . . . . 25
4.3 Branch-and-Bound Search Algorithm . . . . . . . . . . . . . 26
4.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Triangulation Quality . . . . . . . . . . . . . . . . . . 31
4.4.2 Cover Quality . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Cover Potential . . . . . . . . . . . . . . . . . . . . . 34

4.5 Darts and Multiple Boundaries . . . . . . . . . . . . . . . . . 35
4.6 Additional Modeling Control . . . . . . . . . . . . . . . . . . 35

4.6.1 Specifying Rulings . . . . . . . . . . . . . . . . . . . . 36
4.6.2 Overriding Optimal Selection . . . . . . . . . . . . . . 36

4.7 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.9 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Garments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Paper Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Leather, Wood Veneer, and Metal Goods . . . . . . . . . . . 49

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



List of Tables

4.1 Running times for the algorithm on several examples. . . . . 38

vii



List of Tables

viii



List of Figures

1.1 Examples of developable surfaces and their corresponding
patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mapping a sphere to the plane. . . . . . . . . . . . . . . . . . 2

1.3 Applications of developable surfaces. . . . . . . . . . . . . . . 3

2.1 Developable and warped ruled surfaces . . . . . . . . . . . . . 8

2.2 A composite developable surface and its Gauss map. . . . . . 10

2.3 Tangent planes as supporting planes on developable surfaces. 10

2.4 Locally convex and non-convex interior triangulation. . . . . 11

2.5 Developable and warped ruled triangulations interpolating
the same polyline and corresponding Gauss maps. . . . . . . 12

3.1 Virtual garments. . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Artefacts in using approximate developables for manufacturing. 16

3.3 Torsal boundary triangulation interpolating polyline directrices. 18

3.4 Modeling height field developable surfaces. . . . . . . . . . . . 19

4.1 Envelope triangulations for a convex polyline. . . . . . . . . . 23

4.2 Extracting a locally convex triangulation. . . . . . . . . . . . 24

4.3 Planarity metric. . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Algorithm stages on a simple example. . . . . . . . . . . . . . 28

4.5 Pseudocode of main loop. . . . . . . . . . . . . . . . . . . . . 32

4.6 Computing a lower bound on fairness. . . . . . . . . . . . . . 34

4.7 Modeling a cone by a boundary with a single dart. . . . . . . 35

4.8 Specifying rulings. . . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Alternative triangulations for the gazebo example. . . . . . . 37

ix



List of Figures

4.10 Sketching a shoe overtop of an underlying model of a foot. . . 40
4.11 Boundary illustrating limitations. . . . . . . . . . . . . . . . . 41

5.1 Example: Hat . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Example: Poncho . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Example: Tanktop and Skirt . . . . . . . . . . . . . . . . . . 45
5.4 Example: Dress . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Example: Opera House . . . . . . . . . . . . . . . . . . . . . 46
5.6 Example: Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Example: Skyscraper . . . . . . . . . . . . . . . . . . . . . . . 47
5.8 Example: Tulip Lamp . . . . . . . . . . . . . . . . . . . . . . 48
5.9 Example: Helmet . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.10 Example: Chairs . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.11 Example: Purse . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.12 Example: Shoe . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.13 Example: Glove . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



Preface

Part of this thesis has been published in the following paper:

• Rose, K., Sheffer, A., Wither, J., Cani, M.-P., Thibert, B. (2007). De-
velopable Surfaces from Arbitrary Sketched Boundaries. Eurographics
Symposium on Geometry Processing 2007. Pages 163 - 172.

xi



Preface

xii



Acknowledgements

First and forefost, I would like to thank my supervisor Alla Sheffer, without
whom this work would not have been possible. There are countless things
that I learned with her over these past two years which I am grateful for. I
also would like to thank Michiel van de Panne, my second reader, for all of
his valuable feedback.

Thank you to everyone in the Imager lab that I had the pleasure of
working with: Tibi, Vlady, Dan, Llach, Michael, Ian, Steve, Chris, Hagit,
Mike, David, Abhi, Derek, Cheryl, Brad, Gordon, Aaron, Stellian, Yoel, and
anyone else that I’ve forgotten. As well, thank you to everyone at Hillel. I
take with me many great memories.

Thank you to my father and sister for understanding my decision to pur-
sue graduate work three time zones away. To my housemate Izzet, thank
you for many enlightening scientific discussions. To Kira, thank you for all of
the great times and for making me feel like a part of your family. I also owe
a great deal of gratitude to Candice Chatz, who continuously supported me
and prevented me from fulfilling the stereotype of a starving grad student.
Finally, thank you to my late mother, who taught me that everything about
life leaves answers. Undeniable, the pursuit of this degree was no exception.

KENNETH ROSE

The University of British Columbia
August 2007

xiii



Acknowledgements

xiv



Statement of Co-Authorship

The algorithm described in Chapter 4 was developed together with Dr. Alla
Sheffer. Dr. Sheffer supervised the project while I performed research and
implementation. The algorithm was combined with a sketch based user
interface developed by Jamie Wither and Prof. Marie-Paule Cani. A pa-
per describing a system unifying the user interface and the algorithm was
cooperatively prepared [32].

xv



Statement of Co-Authorship

xvi



Chapter 1

Introduction

1.1 Developable Surfaces

Developable surfaces are surfaces that can be unfolded into the plane with-
out distortion. As shown in Figure 1.1, cylinders and cones are examples of
developable surfaces since each can be unfolded to the plane without stretch-
ing or shearing the surface. The unfolded, planar surface is referred to as
the pattern or development of the original surface, depending on the appli-
cation. An example of a non-developable surface is a sphere. To illustrate,
consider the cartographical problem of representing the 2D curved surface
of the earth on a flat map (i.e., a plane). Figure 1.2(b) shows one possible
projection, though it exhibits gross stretching at the north and south poles
(e.g., Greenland in white). As explained in Chapter 2, there is in fact no way
to map a sphere to a plane without introducing distortion. The ability of a
surface to map to the plane with little or no distortion is extremly practical,
making developable surfaces useful in several applications.

(a) Cylinder (b) Cone

Figure 1.1: Examples of developable surfaces and their corresponding pat-
terns.

1



Chapter 1. Introduction

(a) Spherical Earth (b) Mercator Projection

Figure 1.2: Mapping a sphere to the plane. Greenland is highlighted in
white to indicate distortion.

1.2 Applications

Developable surfaces are commonly used when manufacturing with mate-
rials that do not stretch or tear. Any process manipulating fabric, paper,
leather, sheet metal or plywood will benefit from developable surface model-
ing techniques since these materials admit little distortion. In typical setups,
the patterns of the product are first designed by trained individuals, with
a computer performing a bending simulation to help forecast the manufac-
tured result. The product is then fabricated by cutting out the patterns of
the surface from a flat sheet of the respective material and bending these
planar patterns to form the desired shape. Applications include modeling
ship hulls, buildings, airplane wings, garments, ducts, automobile parts.

In ship design, the hull is usually constructed by segmenting it into pieces
fitted with large metal sheets. On singly curved parts of the hull, sheets can
be fitted by a process called rolling, which simply bends the sheets to the
desired shape. The result of rolling is a developable surface which is typ-
ically cylindrical. Rolling alone is normally not sufficient to construct an
entire hull since some parts of the hull may be doubly curved and thus
non-developable. For example, the bow usually includes a bulbous piece
(Figure 1.3(a)) which moves water around the hull in the direction of least
resistance, ultimately reducing fuel consumption. In these non-developable
regions, a heating process is used to deform a sheet after rolling in order to

2



introduce the additional curvature direction. The heating process is usually
performed manually by an experienced individual who heuristically deter-
mines the parameters required to achieve the correct amount of bending.
The heating process is time consuming, labour intensive and error prone.
Thus, modeling a hull primarily with developable surfaces minimizes the
use of heating and simplifies and improves the fabrication process [11, 12].

(a) Ship Hull [38]. (b) Peter B. Lewis building [7].

tube 1

CDS

tube 2

(c) Connecting tubes [37]. (d) Garment Design [9].

Figure 1.3: Applications of developable surfaces.

The benefits of developable surfaces in ship hull design are also perti-
nent when designing buildings from sheets of material. The prolific and
contemporary architect Frank Gehry extensively uses developable surfaces
in his structures. Shelden notes that a major accomplishment of Gehry’s
work is the ability to create innovative designs within the context of con-
ventional construction processes [36]. Though any free form shape can be
constructed by the digital CNC fabrication techniques commonly used by
the aerospace and computer animation industries, the costs of these meth-
ods are frequently prohibitive when applied in an architectural setting. By

3



Chapter 1. Introduction

utilizing developable constraints and staying within the realm of existing
fabrication practices, Gehry is able to reduce costs and fabrication error,
ensuring the final form is tightly correlated to the original design. Figure
1.3(b) shows an image of the Peter B. Lewis building at Case Western Re-
serve University in Cleveland, USA. The brick and steel portions of the
building are both modeled as piecewise developable surfaces [36].

In duct construction, a common problem is fabricating a metal surface
that connects two tubes of different shapes. Specifically, given two space
curves p and q, the problem is finding a surface that interpolates both p

and q (Figure 1.3(c)) [37]. Though there are an infinite number of such con-
necting surfaces, using a connecting developable surface (CDS) is desirable
since a CDS is most easily fabricated from sheet metal. This problem is
straightforwardly solved by the algorithm presented in Chapter 4.

In fashion design, developable surfaces have great utility. Garments are
constructed by sewing together panels that are cut out as patterns from
flat sheets of fabric. For example, in Figure 1.3(d), the dress on the right is
assembled by cutting out and sewing together the patterns on the left. When
designing garments, a core requirement is constructibility and ensuring that
each panel of the garment can be developed from a flat sheet. Although
certain materials stretch slightly due to gravity after assembly (e.g., cotton
weave), garments are traditionally modeled as developable surfaces since
the effect of this stretch is negligable when assembling the panels together.
Designing sewing patterns is a challenging task, requiring significant training
to understand the many ways that panels can join together to correctly form
around the geometry of humans. The next section introduces a modeling
paradigm that greatly simplifies the task of pattern creation and allows
interesting garments to be designed.

1.3 Developables from Boundaries

Despite their ubiquity, developable surfaces remain difficult to model, par-
ticularly for non-expert users. This thesis focuses on the problem of easily
modeling developable surfaces and presents a method in which users simply

4



specify the boundaries of each surface patch as a 3D curve. 3D bound-
ary curves are a natural modeling choice since they can be easily specified
and manipulated through a variety of interfaces (Chapter 5) and provide
intuitive shape control for the underlying surface.

To enable this modeling paradigm, we introduce a method for creat-
ing developable surfaces which interpolate arbitrary boundaries (Chapter
4). We observe the correlation between a developable surface interpolating
a boundary curve and the convex hull of that curve. This linkage is the
basis for a novel algorithm that generates interpolating developable surfaces
for any given smooth input boundary. The method explores the space of
possible interpolating surfaces searching for solutions which have a desired
set of shape properties. It allows the user to rank the importance of the
different properties in order to control the shape of the resulting surface and
supports exploration of alternative solutions.

Chapters 2 and 3 review the relevant mathematical background and
survey related work. Chapter 4 describes a novel algorithm operating in a
discrete setup for computing a developable surface interpolating an arbitrary
polyline boundary. Results obtained from this algorithm are showcased in
Chapter 5. Finally, Chapters 6 and 7 summarize and discuss future work.

5



Chapter 1. Introduction

6



Chapter 2

Background

Developable surfaces have a lengthy mathematical history originating in
differential geometry. This section reviews their main properties, focusing
on those used by the algorithm presented in Chapter 4.

2.1 Ruled and Developable Surfaces

A ruled surface is a surface containing (at least) one one-parameter family
of straight lines [22]. A ruled surface S ⊂ R3 may be represented in the
form

x(s, t) = b(s) + tδ(s),

where b(s) is called the directrix or the base curve of the surface and δ(s)
is called a generator. Intuitively, a ruled surface can be thought of as being
constructed by continuously sweeping out a line in space (i.e., the generator)
with some marked point of the line following the path of the directrix. In-
deed, for a given fixed value of s, the above formula reduces to the equation
of a straight line. This line is called a ruling of the surface.

A developable surface is a ruled surface with the additional property that
the tangent plane is constant at all points along a given ruling [22]. Since
the tangent plane at a point can be described by the surface normal at that
point, an equivlent requirement is that the surface normal at all points along
a given ruling is constant [31]. A ruled surface which is not developable has
normal variation along its rulings and is thus called a warped ruled surface.
A ruled surface is a developable surface if and only if

ḃ · (δ × δ̇) = 0

7



Chapter 2. Background

where the dot above denotes the derivative with respect to s (Theorem 58.1
of [22]). Figure 2.1 shows a developable surface and warped ruled surface
sharing the same boundary.

(a) Developable Surface (b) Warped Ruled Surface

Figure 2.1: Developable and warped ruled surfaces. In (a), the normals are
constant along the specified ruling while in (b), the normals vary along the
ruling.

2.2 Gaussian Curvature under Isometric

Mapping

A bijective function f : S ⊆ R3 → T ⊆ R3 is an isometric or length preserv-
ing mapping if the length of any arc on S is the same as that of its image
on T under f . For example, rotation around a given axis is an isometric
mapping. An extremely useful property is that the intrinsic properties of a
surface, those depending only on the first fundamental form, are invariant
under isometric mapping (Theorem 57.1 of [22]). The principal curvatures
at a point on a surface measure the minimum and maximum bending of the
surface at that point. Gauss’ theorema egregium states that the Gaussian
curvature K, the product of the principal curvatures, is an intrinsic property
of a surface [19]. Therefore, K is invariant under isometric deformation.

8



2.3 Properties of Developable Surfaces

A portion of a surface is developable if and only if K = 0 everywhere on the
portion (Theorem 59.2 of [22]). Since a plane has K = 0 everywhere, a plane
is an example of a developable surface. Furthermore, since K is invariant
under isometric deformation and isometries are bijective, any surface that
can be isometrically mapped to the plane is developable. The converse of this
statement, that any developable surface can be isometrically mapped to the
plane, is also true and is proved in Theorem 59.3 of [22]. Thus, developable
surfaces are the only surfaces that can be isometrically deformed to the
plane. This property explains why it is impossible to map a sphere to the
plane without distortion (Figure 1.2). Since a sphere has K > 0 everywhere,
it is not developable and thus cannot be isometrically mapped to the plane.

The Gauss map is a function that maps every point p of an oriented
surface in R3 to the point on the unit sphere that is parallel to the normal
at p. In general, the Gauss map of a surface is another surface (right side
of Figure 2.5(d)). However, in the case of developable surfaces, since the
normals are constant along a given ruling, the Gauss map degenerates into
a curve (right side of Figure 2.5(c)) or possibly a network of curves (Figure
2.2(b)). If the Gauss map is a single curve, then the directrix of the surface
is a single continuous curve. Pottmann and Wallner [31] refer to these
surfaces as developable ruled surfaces or torsal ruled developable surfaces. To
avoid ambiguity with ruled surfaces as defined in Section 2.1, these surfaces
will be referred to as torsal developable surfaces, in contrast to composite
developable surfaces whose Gauss map is a network of curves. A composite
developable surface is thus made of a union of torsal developable surfaces
joined together by transition planar regions [16], where the latter correspond
to the branching points on the Gauss map. In either case, another useful
property of developable surfaces is that their image under the Gauss map is
one dimensional.

On a developable surface, the tangent planes of most rulings bound some
local neighbourhood of the ruling in one of the two closed half-spaces induced
by the plane (Figure 2.3(a)). Therefore, most tangent planes of rulings are

9



Chapter 2. Background

(a) (b)

Figure 2.2: A composite developable surface and its Gauss map.

supporting planes [23], the exception being rulings where the surface has an
inflection (Figure 2.3(b)). When the tangent plane of a ruling is a supporting
plane, since all rulings in the local neighbourhood lie on one side of the plane,
the given ruling lies on the convex hull of the neighbourhood (i.e., the local
convex hull) [17]. In contrast, on a warped ruled surface, most rulings lie
inside their local convex hull.

(a) (b)

Figure 2.3: (a) Tangent plane is a supporting plane on a developable surface;
(b) Profile view of (a). Only on the inflection ruling is the tangent plane
not a supporting plane.

10



2.4 Developable Boundary Triangulations

Given a polyline with vertices sampled from an input piecewise smooth
curve, a boundary triangulation is a manifold triangulation with no interior
vertices whose boundary is the polyline. By construction, any boundary
triangulation is developable, as the triangles can be unfolded into the plane
with no distortion. In the limit however, as the sampling density of the
polyline increases, not every triangulation will approximate a smooth de-
velopable surface. Specifically, the limiting surface of a triangulation is a
developable surface if and only if the majority of the interior edges of the
triangulation are locally convex [17]. An interior edge is defined as locally
convex if it lies on the convex hull of its end vertices and the four adjacent
polyline vertices [17] (Figure 2.4(a)). An interior edge is non-convex if it lies
inside this convex hull (Figure 2.4(b)).

(a) Locally Convex (b) Non-Convex

Figure 2.4: Locally convex and non-convex interior triangulation edges PiPj .

For a triangulation to approximate a smooth developable surface, the
number of non-convex edges should not depend on the sampling density of
the polyline. Figure 2.5 shows two triangulations of the same polyline, one
of which approximates a developable surface, while the other approximates
a warped ruled surface. In the first case, all the interior edges are locally
convex (Figure 2.5(a)). In the second case, the majority of edges are non-
convex (Figure 2.5(b)).

11



Chapter 2. Background

(a) Developable Triangulation (b) Warped Ruled Triangulation

(c) Gauss map of 2.5(a) and of limit surface (d) Gauss map of 2.5(b) and of limit surface

Figure 2.5: Developable and warped ruled triangulations interpolating the
same polyline and corresponding Gauss maps.

12



Chapter 3

Related Work

In computer graphics and modeling, developable surfaces have raised inter-
est in several different contexts including reconstruction from point clouds
[12, 29] and mesh segmentation into nearly developable charts for parame-
terization and pattern design [20, 35, 43]. The following review only covers
methods for modeling developables either via developable approximation or
directly.

3.1 Developable Approximation

Given an existing non-developable surface, a large number of methods aim
at approximating it with one or more developable surfaces. Some of the
methods operate on triangle meshes in a discrete setup [15, 25, 28, 41] while
others operate in a continuous setup for incorporation into NURBS based
modeling systems.

3.1.1 Discrete Methods

Wang and Tang [41] increase the developability of a mesh surface by min-
imizing its Gaussian curvature. Using a penalty based function, they solve
a global constrained optimization problem that accounts for Gaussian cur-
vature, the amount of deformation, and continuity between patches. Since
solving the global optimization may be slow, they additionally formulate
an iterative local optimization scheme. The authors note that if a high
degree of developability is required, large discrepancies result on the final
surface. Since the surface normals are not constrained in the optimization,
these discrepancies are often manifested as wrinkles, a possibly undesirable

13



Chapter 3. Related Work

effect.

Similar to Wang and Tang [41], Frey [18] also attempts to increase the
developability of a mesh by minimizing its Gaussian curvature. Frey at-
tempts to introduce singular vertices into a 2.5D developable triangulation
in order to model buckled developable surfaces. Each singular vertex is it-
eratively moved in the z direction until the sum of angles around the vertex
equals 2π. Like many others, Frey translates the property of a developable
surface having zero Gaussian curvature everywhere into a requirement that
the sum of angles around each vertex equals 2π.

Decaudin et al. [15] describe a system for designing virtual garments
where a user first constructs a non-developable garment that is segmented
into overlapping mesh patches. For each mesh patch, the locally best approx-
imating developable surface is computed and the mesh is deformed towards
this surface. As evident in Figure 3.1, the resulting surfaces are “more”
developable in the sense that their Gauss map covers less area.

(a) Typical Input (b) Approximation
Output

(c) Gauss Map of
3.1(a)

(d) Gauss Map of
3.1(b)

Figure 3.1: Virtual garments [15].

In their conical meshes paper, Liu et al. [25] address approximation in
the context of architectural design. Given a quadrilateral tiling of an input
model, the method iteratively perturbs vertices to create a tiling with planar
faces and the same connectivity as the input. Alternating the pertubation
with subdivision induces a method for modeling developable strips.

14



3.1.2 Continuous Methods

Pottmann and Wallner [30] approximate an input NURBS surface with cer-
tain types of developable NURBS surfaces. Their technique finds a devel-
opable surface that approximates a set of tangent planes sampled from the
input surface. The fidelity of the approximation is defined in terms of a
distance metric defined between planes. This distance metric is optimized
to construct the approximating developable surface.

Chen et al. [12] focus on approximating ship hulls. They initially seg-
ment the input surface using a region growing approach and each segment is
approximated individually by a cone or cylinder of revolution. These pieces
can then be joined together with G1 continutity using [24], or a Gr (r ≥ 2)
approximating developable can be found using [30].

Wang et al. [39] increase the developability of a trimmed NURBS surface
by minimizing its Gaussian curvature. Analagous to their approach for 3D
meshes described in [41], the optimization function accounts for both the
overall Gaussian curvature and the amount of deformation. The optimiza-
tion process adjusts the positions and weights of the control points of the
original trimmed surface. The authors note that the running time may be
significant and that the Gaussian curvature may actually increase locally.

3.1.3 Benefits and Limitations of Approximation

Modeling developable surfaces through approximation is attractive as de-
signers do not have to concern themselves with developability constraints
during the modeling process. Ideally, they can freely utilize all sorts of
modeling tools (e.g., blends, fillets) and then rely on an approximation algo-
rithm to yield a developable result. In practice though, the approximation
approach is highly restricted since the methods can only succeed if the orig-
inal input surfaces already have fairly small Gaussian curvature. Moreover,
in most cases the final result is not analytically developable. While this is
not a problem for applications such as texture-mapping, it can be problem-
atic for manufacturing, where the surfaces need to be realised from planar
patterns (e.g., sewing). In these setups the distortion caused by using un-

15



Chapter 3. Related Work

folded patterns from approximate developables can be quite significant, as
demonstrated in Figure 3.2. In this example from [20], the horse model was
segmented into nearly developable charts unfolded into the plane with L2

stretch of less than 1.01 [20]. This can be visually confirmed by observing
that the isolines in Figure 3.2(a) are perpendicular and define squares of
approximately equal area. However, when the patterns created from the
unfolding were sewn back together, the resulting toy horse had significantly
different proportions from the initial model (e.g., the front legs). Though mi-
nor surface details are expectedly lost due to the resilience of the fabric and
possible sewing and cutting errors, a contributing factor to the discrepancy
in proportions is the fact that the charts are not completely developable.

(a) (b)

Figure 3.2: Artefacts in using approximate developables [20] for manufac-
turing. (a) approximate developable segmentation (L2 stretch 1.01); (b)
reassembled model.

3.2 Direct Modeling

As opposed to modeling by approximation, another class of techniques di-
rectly model developable surfaces, ensuring that the user has an analytically
developable surface at all times. Most existing methods for modeling devel-
opable surfaces consider only torsal developable surfaces, surfaces whose
normal map is a single curve, and are restricted to modeling four sided

16



patches. In the continuous setup, these surfaces are often represented us-
ing ruled Bézier or B-Spline patches and developability is enforced using
non-linear constraints [4, 5, 13].

Aumann [4] proposes a general condition required for a developable
Bézier surface to interpolate two given Bézier curves. To compute such
a Bézier surface, the presented method restricts the input boundary curves
to lie in parallel planes. This requirement greatly simplifies the non-linear
system of equations, though at the expense of the modeling capability of the
developable patches.

Chu and Séquin [13] derive Aumann’s developability condition [4] geo-
metrically from the de Casteljau algorithm. This formulation permits them
to work with boundary Bézier curves lying in non-parallel control planes. In
their method, given one freely specified boundary curve, the second bound-
ary curve has five available degrees of freedom.

In a later work, Aumann [5] extends the de Casteljau style approach of
[13] by increasing the number of available design parameters using degree
elevation. The resulting algorithm generates a developable Bézier surface
interpolating two given Bézier curves of arbitrary degree and shape.

A common requirement of these continuous methods is that users must
clearly specify ruling directions for the final surface. This type of interaction
assumes that users have sufficient geometric knowledge to know what ruling
directions actually are, preventing these methods from being adopted by
non-experts.

Wang and Tang [40] use a discrete setup for modeling torsal developable
surfaces. The input to their method is two polyline directrices for the ruling
and the output is a developable triangle strip where each interior edge ap-
proximates a ruling connecting the two directrices (Figure 3.3). They cast
the problem as a Dijkstra’s shortest path search [14] on a weighted solution
graph whose vertices represent potential edges in the final triangulation.
The shortest path corresponds to the optimal triangulation. Different op-
timization objectives, such as minimal area or maximal convexity, can be
realized by varying the weights used in the solution graph.

Pottmann and Wallner [31] use a dual space approach to define a plane-

17



Chapter 3. Related Work

(a) Polyline Directrices (b) Torsal Boundary Triangulation

Figure 3.3: Torsal boundary triangulation interpolating polyline directri-
ces [40].

based control interface for modeling developable patches. Controlling such
an interface requires significant geometric expertise.

For garment design, a highly time consuming approach presented by
some commercial modeling tools [10, 27] is to first design a planar pattern
for the surface and then deform it into the desired shape using bending and
physical simulation. Since designing sewing patterns is a challenging task,
this approach is limited to the realm of expert users.

Bo and Wang [8] introduce a modeling system for developable surfaces
with an emphasis on paper bending. The system utilizes the relationship
between a torsal developable surface and a geodesic curve lying on that
surface. Users isometrically manipulate a smooth 3D curve representing a
geodesic and the system finds the unique torsal developable surface con-
taining the user’s curve. The input curve is reparameterized numerically at
each time step to ensure an isometric deformation. Though composite de-
velopable surfaces are supported by the system, users must manually specify
each individual torsal piece with a separate geodesic curve.

Frey [17] describes a method for computing discrete height-field devel-
opable surfaces that interpolate a given polyline (Figure 3.4). Given a user-
provided projection plane, the method first computes all of the possible
interior edges in the polygon formed by projecting the polyline to the plane.
It then classifies edges in terms of their likelihood of being part of a de-
velopable surface, giving a higher priority to locally convex edges. Finally,

18



it selects a subset of the edges that forms a valid triangulation by simu-
lating the bending caused by closing a blankholder. A blankholder is the
component of a press machine that holds the punch surface, the surface
that is pressed over an initially flat sheet (the blank) to cause the blank to
bend. This algorithm operates under the assumption that the projection
to the plane of the desired triangulation contains no self intersections, re-
stricting the method to height field (2.5D) surfaces. While the method is
well suited for predicting the bending of a metal sheet under the closing
of a blankholder, using the technique for modeling developable surfaces is
difficult since the only available control over the final surface is the user’s
choice of projection direction.

Figure 3.4: Modeling height field developable surfaces [17].

The following chapter introduces a novel algorithm to compute a de-
velopable boundary triangulation interpolating an arbitrary smooth input
boundary.

19



Chapter 3. Related Work

20



Chapter 4

Constructing Developable

Triangulations

As mentioned in Section 1.3, developable surfaces are difficult to model.
Chapter 3 pointed out that approximation techniques may admit too much
distortion to be practical for manufacturing setups. Direct modeling ap-
proaches, though guaranteeing analytically developable surfaces, are often
difficult to control and require users to have significant geometric expertise.
Additionally, most direct modeling approaches are limited to only model-
ing torsal developable surfaces. In order to model composite developable
surfaces with these approaches, users must manually segment their desired
composite surface into individual torsal pieces, a non-intuitive operation.

This chapter describes an algorithm for computing a developable bound-
ary triangulation interpolating an input polyline. Combining this algorithm
with a user interface for specifying 3D curves (Section 4.9) creates an easy-
to-use system for modeling developable surfaces. Users simply specify a
closed boundary and the algorithm returns a developable surface with de-
sirable surface properties (Section 4.2) that interpolates the boundary. The
system is easily accessible to non-experts since users are not required to have
significant knowledge of geometry or the properties of developable surfaces.

The algorithm is sufficiently robust and can handle complex boundaries,
including boundaries with darts (Section 4.5) and tangential discontinuities.
The next section introduces the linkage between a developable surface inter-
polating a boundary curve and the convex hull of that curve and explains
how this can be used as the basis for the algorithm.

21



Chapter 4. Constructing Developable Triangulations

4.1 Developability and Convexity

Section 2.4 discussed the potential of boundary triangulations to represent
developable surfaces that interpolate a given boundary polyline. As ex-
plained, triangulations that approximate smooth developable surfaces have
the property that the majority of their edges are locally convex. A gen-
eral method for obtaining such triangulations is now described. Section
4.3 refines this method to efficiently search for triangulations which satisfy
additional requirements.

We make the following observation which forms the basis for our method:
Since most edges of a desirable triangulation must be locally convex, a natu-
ral place to identify developable regions interpolating a boundary polyline is
the convex hull of the boundary, where every edge is locally convex. This
observation is well motivated by the continuous case where the convex hull
of almost every sufficiently smooth closed space curve consists of planar re-
gions and torsal developable surfaces, with the torsal developable surfaces
interpolating parts of the curve [34]. We rely on this observation in order
to significantly narrow the search space when looking for desirable triangu-
lations.

If a smooth space curve lies entirely on its convex hull (i.e., the curve
is convex), the hull is separated into two developable envelopes [34]. In
the discrete case, the convex hull of a closed polyline is a triangular mesh
containing a subset of the polyline’s vertices. If the polyline is convex, the
hull is separated into two developable triangulations. These triangulations
are the left and right hull envelopes and are defined with respect to the
orientation of the boundary (Figure 4.1). If the polyline is planar, then these
envelopes are identical. By construction, both triangulations interpolate the
polyline. Moreover, as desired, every interior edge in each triangulation is
locally convex since it is an edge on the convex hull.

If the polyline is not convex, it will not separate its convex hull into
two envelopes and a more sophisticated modeling strategy is required. As
mentioned previously, the convex hull of almost every closed sufficiently
smooth space curve consists of planar regions and torsal developable sur-

22



(a) Polyline (b) Convex Hull with
Envelopes

(c) Left Envelope (d) Right Envelope

Figure 4.1: Envelope triangulations for a convex polyline. The algorithm in
Section 4.3 selects (d).

faces [34], where each of these torsal developable surfaces interpolates parts
of the curve. If a polyline is sampled sufficiently densely from a smooth
space curve, its convex hull will closely approximate the convex hull of the
curve. We observe that the torsal developable surfaces on the hull of the
continuous curve correspond to regions, or charts, of consecutive triangles on
the polyline’s hull having edges on the polyline (Figure 4.2(b,c,d,e)). Such
charts are formally defined as sequences of hull triangles, such that:

1. each triangle shares at least one edge with another triangle in the same
chart;

2. each triangle shares at least one edge with the input polyline;

3. all of the triangles are oriented consistently with respect to the poly-
line.

The second requirement implies that charts are separated from each other by
interior triangles: triangles of the convex hull with no edges on the polyline
(shown in brown in Figure 4.2(b)). The last requirement ensures that the
triangulation constructed by the algorithm is manifold and orientable.

Subtracting each chart from the polyline by removing the portions of the
polyline inside the chart and replacing them with the interior boundaries
of the chart results in one or two smaller closed polyline subloops (Figure
4.2(c), (d), (e)). If the subloops lie on their convex hulls, their left and right
envelopes will provide triangulations, which together with the removed chart

23



Chapter 4. Constructing Developable Triangulations

Figure 4.2: Extracting a locally convex triangulation: (a) boundary; (b)
convex hull with extracted charts (interior triangle shown in black); (c), (d),
(e) individual charts and remaining subloops after subtraction; (f) recursing
on the subloop formed by removing the purple chart; (g) resulting trian-
gulations (the framed triangulation is the one returned by the algorithm
in Section 4.3); (h) two of the triangulations created with different chart
choices.

24



will interpolate the original polyline (Figure 4.2(f)). If a subloop does not
lie on its convex hull, we can identify charts on this convex hull and proceed
recursively. By construction, charts on the subloop hulls will also correspond
to torsal developable surfaces interpolating the original polyline.

It is theoretically possible, though unlikely, for a hull to contain no valid
charts. In this pathological case, the algorithm treats each hull triangle as
a separate chart.

The recursion is guaranteed to terminate as the number of polyline ver-
tices decreases at each iteration and a polyline with three vertices always lies
on its hull. In any resultant triangulation, the only potentially non-convex
edges will bound adjacent triangles computed at different levels of the re-
cursion. All other edges are necessarily locally convex as they originated
from within a convex hull, either that of the original polyline or of one of
the subloops. As desired, the number of non-convex edges is very small and
is related to the boundary complexity and not to the number of boundary
vertices. However, as shown in Figure 4.2(g) and (h), the choice of different
charts to proceed from leads to drastically different triangulations, raising
the question of which choice the user would prefer. The subsequent sections
analyse the desirable shape characteristics of discrete developable surfaces
and describe an algorithm which guides the selection to efficiently obtain a
good interpolating surface.

4.2 Desirable Triangulation Properties

When considering triangulations which approximate a smooth developable
surface, we require the majority of triangulation edges to be locally convex.
An additional constraint, ignored in Section 4.1, is smoothness: requiring
the dihedral angles between adjacent triangles to be low. Even with these
two restrictions, there may exist multiple boundary triangulations providing
a valid solution (see Figure 4.2 (g),(h)), raising the question which of these is
expected when a particular boundary is specified. Clearly, when designing
a modeling tool, predictability is a desirable property. Human perception
studies indicate that “simplicity is a principle that guides our perception...”

25



Chapter 4. Constructing Developable Triangulations

[6]. This principle is well known in Gestalt theory and is commonly used
in sketch interpretation [21]. In our work, it implies that the surface the
user expects is the simplest developable surface fitting a given boundary.
Based on numerous examples, we hypothesize that a surface is considered
simpler and hence more predictable if its normal map has fewer branches,
or equivalently, if its directrix has fewer discontinuities.

In addition to predictability, or instead of it, we can consider the fairness
of the created surface. Frey [17] and Wang and Tang [40] describe a large
set of measures of surface fairness, including metrics of mean curvature and
bending energy. We found that minimizing the integral l2 mean-curvature
described as the sum of squared dihedral angles across interior edges re-
sults in visually fair triangulations. The advantage of this metric is that
it can be extended to provide a lower bound on the fairness of a boundary
triangulation given only a subset of its triangles (Section 4.4.1).

The next section presents a practical method for computing boundary
triangulations that satisfy all of these requirements, and thus define which
developable surfaces to output.

4.3 Branch-and-Bound Search Algorithm

We now extend the basic methodology described in Section 4.1 to search
specifically for smooth triangulations and describe a procedure to efficiently
navigate the search space to obtain triangulations that are predictable and
fair.

We observe that for convex polylines, the two hull envelopes mentioned
above are not necessarily the best solutions with respect to smoothness (see
the pink and blue envelopes at iteration one in Figure 4.4). Therefore, our
algorithm extracts not only these envelopes, but also the separate charts that
are part of the convex hull. It then proceeds to explore possible interpolating
triangulations that contain one or more of the identified charts. Fragmenting
the envelopes into charts can increase the number of non-convex edges in the
final triangulation. However, their number remains a function of boundary
complexity and does not depend on the number of boundary vertices, as

26



(a) λ3
λ1

=∞ (b) λ3
λ1

= 132 (c) λ3
λ1

= 33.5

Figure 4.3: Planarity metric. The second row is a profile view of the first
row. A higher value indicates a more planar polyline. The completely planar
polyline in (a) has a value of ∞.

desired.

As mentioned previously, if the polyline is planar, then the two hull
envelopes are identical. Clearly, if a polyline is planar then any manifold
triangulation of it is developable. To measure the planarity of a polyline,
we fit an orthogonal distance regression plane to it and consider the ratio
λ3
λ1

of the largest and smallest eigenvalues of the covariance matrix [2]. This
metric is positive, scale independent, and approaches infinity as the polyline
becomes more planar. To illustrate, Figure 4.3 shows increasingly non-
planar polylines superimposed with their regression planes and the values
of their corresponding planarity metric. Polylines whose planarity metric is
larger than a user provided threshold (we use 100,000 in our examples) are
considered planar and triangulated by a single triangle fan. To prevent this
specific choice of triangulation from influencing the fairness computation
(Section 4.2), internal edges of the triangulation are marked as having a
dihedral angle of zero across their adjacent faces.

To obtain smooth triangulations we require that any interior edge in a
chart has a dihedral angle below a specified threshold. Charts with larger
dihedral angles are not considered for future processing. For instance, in the
first iteration of the algorithm in Figure 4.4, this invalidates the light and
dark green charts. We also require the angles on edges between any chart
and the adjacent interior triangles to lie below the threshold. We observe
that since these edges are on the convex hull, the dihedral angle between

27



Chapter 4. Constructing Developable Triangulations

Figure 4.4: Algorithm stages on a simple example. Interior triangles are
shown in black. The framed triangulation is the output. The cover pushed
into the queue in iteration four will be discarded at iteration five in stage 1
(it is not better than the best triangulation).

28



the chart and any other triangle formed using these edges is bounded from
below by the current angle. Charts which violate this property are also
eliminated. In the first iteration in Figure 4.4, this invalidates the orange
and dark yellow charts.

To reduce the number of non-convex edges and to speed up processing,
we only consider charts larger than a certain percentage of the convex hull
area (we use 1% - 3% in our examples). Both the angle and size thresholds
can be adjusted depending on the input. If both are completely relaxed, our
method will find a solution for practically any input.

Given these definitions of valid charts, our algorithm computes bound-
ary triangulations that are unions of charts and envelopes. The algorithm
uses a variation of the branch-and-bound approach [14], which helps drive
the search towards a good solution while avoiding the exploration of non-
promising ones. Similar to A∗ search [33], the method uses a priority queue
of sets of charts, or covers, that interpolate segments of the polyline (Figure
4.4). The queue is initialized with the empty cover. The priority function
of the queue is based on a potential metric (Section 4.4.2) and orders cov-
ers such that the next popped cover is expected to lead to an acceptable
boundary triangulation fastest.

During processing, the method maintains the best boundary triangula-
tion found to that point. The quality of a triangulation is measured with
respect to the desired triangulation properties (Section 4.2). The same met-
ric is used to measure the quality of a cover, as a lower bound on the quality
of any possible triangulation containing this cover. At each iteration of the
algorithm the following sequence of operations is performed as visualized in
Figure 4.4.

1. Pop Cover: The algorithm pops a cover C from the priority queue,
based on the potential metric. If a boundary triangulation was already
found, the method compares the quality of the best triangulation found
to the quality of C. If the quality of C is worse, it is immediately
discarded. Otherwise, the method obtains the set of polyline subloops
S formed by subtracting (as defined in Section 4.1) the cover charts

29



Chapter 4. Constructing Developable Triangulations

from the original boundary and computes their convex hulls.

2. Explore Possible Triangulations: The method checks if the con-
vex hulls of each of the subloops are separable into two envelopes.
If the envelopes exist for all the subloops, then each permutation of
them combined with the cover’s triangles defines a triangulation of
the original boundary. Triangulations having interior dihedral angles
above the smoothness threshold are discarded. In Figure 4.4, this dis-
cards all the boundary triangulations in iterations one through three.
If there are multiple possible triangulations satisfying the smoothness
constraint, the algorithm selects the highest quality one among them
(Section 4.4.1). If this is the first triangulation found or if the new
triangulation is better than the best triangulation found so far, then
the best triangulation is appropriately updated.

3. Form New Covers: The method then extracts valid charts from the
convex hulls of all the subloops in S. If a chart shares a boundary with
the cover C, it tests if the dihedral angle across the shared edge satisfies
the smoothness threshold. Charts which fail the test are discarded.
For each of the remaining charts the method forms a new cover N

combining C and the new chart.

4. Add to Queue: We observe that a subset of a new cover N may
already be present in the priority queue. In this case, naively adding
N to the queue can lead to repeated computations. To avoid this
redundancy, the method checks if N contains a cover already in the
queue. If this is not the case then N is added to the queue. If a
subset of N is in the queue and the quality of N is better than that
of the subset one, the subset cover is removed from the queue and N

is inserted. If it is worse, then N is discarded. In Figure 4.4, iteration
two, the blue-red cover is discarded since a better subset of it (the
purple cover) was added to the queue at iteration one, and was not
yet processed.

5. Termination: The algorithm terminates if the queue is empty or if

30



the best computed triangulation is deemed to be acceptable, using the
measures described in Section 4.4.1. Otherwise, the algorithm goes
back to Stage 1.

As mentioned previously, the algorithm uses a variation of the branch-
and-bound approach [14] and operates similarly to A∗ search [33]. Like
all branch-and-bound methods, the algorithm maintains the best solution
found so far and uses it as an upper bound against which the current cover
is compared. The algorithm is similar to A∗ in the sense that it uses a
priority queue of partial solutions (i.e., covers) and processes them in the
order most likely to lead to a solution the fastest. However, unlike classical
A∗, there is no a priori goal state. As described in Stage 5, the algorithm only
terminates when the queue is empty or if the best solution found so far is
acceptable. Additionally, to avoid repeated computation, the algorithm does
not maintain an explicit closed list of previously processed covers. Rather, as
described in Stage 4, the method avoids repeated computation by checking
if the current cover entirely contains a cover already in the priority queue,
and if so appropriately removes one of these.

The pseudocode for the algorithm is presented in Figure 4.5.

4.4 Metrics

4.4.1 Triangulation Quality

When evaluating triangulation quality, we consider two of the criteria dis-
cussed in Section 4.2: predictability and fairness. We do not need to
take smoothness into account as the algorithm automatically discards non-
smooth triangulations. To evaluate predictability, we compute the number
of branching points on the surface normal map. In a discrete setup, these
correspond to interior triangles in the triangulation and hence can be eas-
ily counted. Fairness is measured as the sum of squared dihedral angles
across interior triangulation edges. Note that the optimum is zero for both
metrics. In our setup, we consider predictability as more important than

31



Chapter 4. Constructing Developable Triangulations

Input: Polyline orig

best ← Null ;
PriorityQueue pq ;
pq.Insert(EmptyCover);
while pq not empty and best not good enough do

C ← pq.Pop();
if best is better quality than C then continue ;

S ← orig.Subtract(C);
ComputeConvexHulls(S);
if every subloop ∈ S has envelopes then

foreach permutation P of envelopes do
if P + C is smooth then

if P + C is better quality than best then
best ← P + C ;

end
end

end
end

foreach subloop ∈ S do
Charts ← ComputeCharts(hull of subloop);
foreach chart ∈ Charts do

N ← chart + C ;
if N is not smooth then continue ;
if N ⊇ some other cover R ∈ pq then

if N is better quality than R then
pq.Remove(R);
pq.Insert(N);

end
else

pq.Insert(N);
end

end
end

end
return best

Figure 4.5: Pseudocode of main loop.

32



fairness. Thus, to compare two triangulations, we first compare predictabil-
ity and only if the predictability is the same compare fairness.

When determining if a triangulation is acceptable (Stage 5), the two
criteria can be compared against lower bounds set by the user. Using such
lower bounds can speed up the processing, as the algorithm will terminate
once an acceptable triangulation is found.

4.4.2 Cover Quality

We consider the same two criteria when evaluating a cover, wherein a cover
evaluation aims to provide a lower bound on the quality of any triangulation
that contains it. The lower bound on predictability measures the minimal
number of interior triangles in any triangulation containing the cover. To
compute this value, we consider the set of subloops S formed by subtracting
the cover charts from the original boundary. We observe that if a subloop
shares edges with more than two cover charts, any triangulation of it will
contain at least one interior triangle1. A subloop which is adjacent to one
or two cover charts can potentially be triangulated without any interior
triangles. Thus the predictability metric of a cover is the number of subloops
adjacent to more than two cover charts.

To measure the fairness of a cover we first compute the sum of squared
dihedral angles within the cover charts and then add to it a lower bound on
the sum of angles for the subloops in S computed as follows. If a subloop
has two adjacent cover charts, we first fit an orthogonal distance regression
plane to the subloop and compute the dihedral angles α1 and α2 between
the plane and the chart triangles adjacent to the subloop (Figure 4.6). The
sum of the two angles gives us a lower bound on the sum of angles on any
interpolating triangulation of the subloop and between this triangulation
and the adjacent charts. To bound the sum of squared angles, we assume
equal distribution on all the n− 1 edges involved, where n is the number of
vertices on the subloop2. Thus for each such subloop we add to the fairness

1The triangulation has n−2 triangles and less than n−3 edges on the original boundary,
where n is the polyline size. Hence at least one triangle has no boundary edges.

2We arrive at n− 1 as the number of interior edges in the triangulation n− 3 plus the

33



Chapter 4. Constructing Developable Triangulations

(a)

(b) Profile of (a) (c) Dihedral Angles

Figure 4.6: Computing a lower bound on fairness. (a) An orthogonal dis-
tance regression plane (blue) is fit to the red subloop and normals are cal-
culated. (b) Profile view; (c) Notation used for the dihedral angles.

metric (α1 + α2)2/(n − 1). If a subloop has more than two adjacent cover
charts, we pick a random pair and do the same computation. If a subloop
has only one adjacent chart, we return zero as an estimated lower bound for
that subloop.

A cover and a triangulation or two covers are compared in the same way
as two triangulations, by first considering predictability and then fairness.
Since the cover quality is a lower bound, it can be safely used when deciding
to discard a cover if it cannot lead to a triangulation better than the current
one (Stage 1).

4.4.3 Cover Potential

The purpose of this metric is to prioritize covers based on their potential
to be part of the expected final triangulation. The final triangulation is
expected to have a very small number of interior triangles. Thus a cover
is more likely to lead to an acceptable triangulation if it contains a small
number of charts, where at least one of the charts is quite large. We first
order the covers in ascending order based on the number of charts, and then

two edges adjacent to the charts.

34



(a) (b)

Figure 4.7: Modeling a cone by a boundary with a single dart.

in descending order based on the largest consecutive chart area.

4.5 Darts and Multiple Boundaries

Our method is the first to our knowledge to seamlessly handle darts as well
as multiple boundary loops. Darts are duplicate edges on the boundary
and are frequently used in design setups such as garment making to intro-
duce points or lines of non-zero curvature onto the surface. To illustrate,
Figure 4.7 shows how a cone can be modeled by a boundary with a single
dart. The processing of darts is straightforward and requires only minor
data-structure modifications to support coincident polyline vertices. When
processing boundaries with multiple loops the method prioritizes processing
of charts which connect separate loops before processing any other chart. If
such charts are unavailable, the method connects the loops by the shortest
tree of edges, treating those as interior edges for processing purposes.

4.6 Additional Modeling Control

The algorithm, as described, returns the best boundary triangulation com-
puted, based on user indicated preferences in terms of quality metrics.
Clearly, there might be cases when a user has additional constraints in mind.
For instance, for the gazebo in Figure 5.6 we had a particular orientation in
mind. We provide two mechanisms for users to explicitly control the final
surface: specifying rulings and overriding optimal selection.

35



Chapter 4. Constructing Developable Triangulations

4.6.1 Specifying Rulings

To influence the final surface, users can specify a few of the rulings they
expect to see on the result. These rulings are treated as triangulation edges
which are constrained to be part of the final surface. For the purse example
(Figure 5.11) we used this option to specify a ruling to the right of the handle,
causing the purse to bulge outwards instead of curving inside (Figure 4.8).
The specified edges segment the boundary into several separate subloops
and the algorithm is run separately on each subloop, considering only the
original polyline edges as boundary edges for chart extraction.

4.6.2 Overriding Optimal Selection

In addition to user drawn rulings, we provide another mechanism for obtain-
ing alternative triangulations. Each time the algorithm computes a triangu-
lation, it is immediately visualised and stored while the rest of the processing
continues. The user thus has the option to interrupt the algorithm when
they see a triangulation that they like, and they may also browse all the com-
puted triangulations at any point during or after processing. The gazebo
(Figure 5.6) was selected this way. Alternatives found by the method are
shown in Figure 4.9.

(a) (b) (c) (d)

Figure 4.8: Specifying Rulings. (a) Original input boundary network; (b)
Surface structure of (a); (c) Boundary network and specified ruling; (d)
Surface structure of (c)

36



(a) (b) (c) (d) (e)

Figure 4.9: Alternative triangulations for the gazebo example (Figure 5.6)
found by our method. (a) Original input boundary; (b) Solution used to
make gazebo; (c), (d), (e) Alternative solutions.

4.7 Runtime

The search space for the algorithm is exponential in the number of charts
found. However, using the priority queue combined with the potential and
quality estimations, the method typically performs only a small number of
iterations (less than two thousand for all the models shown in Chapter 5).
At each iteration the dominant component of the runtime is the convex
hull computation, which takes O(n log n) time in the number of vertices on
the input boundaries. Thus, in practice, the overall runtime varies from a
few seconds for simple models such as the Opera House (Figure 5.5), to a
few minutes for more complex models. We observe that the total runtime
strongly depends on the number of charts formed at each iteration, which
is directly linked to the complexity of the input boundary rather than to
the number of vertices on it. Table 4.1 lists running time statistics for sev-
eral of the examples presented in Chapter 5. The total time is the amount
of time passed until the priority queue of covers is empty, at which point
the algorithm terminates since it has exhausted its search space. Since we
permit overriding the optimal selection (Section 4.6.2), we also show the
solution time which is the amount of time for the algorithm to first ar-
rive at the presented surface as a solution. For some of the examples such
as the skyscraper roof or the paper lamp leaf, the presented surface was
found almost immediately, though the algorithm continued to find alterna-
tive solutions until its search space was exhausted. The running times were
collected on a computer with an AMD Opteron 2218 processor and 4 GB of

37



Chapter 4. Constructing Developable Triangulations

Model # Vertices Solution Time (s) Total Time (s)
Skirt (back) 737 17.8 19.9
Skirt (front) 736 31.2 34.7
Tanktop (back) 354 4.2 4.6
Tanktop (front)? 358 38.7 156.8
Opera House 245 2.8 2.8
Skyscraper Body 300 + 400 8.9 11.2
Skyscraper Roof 400 0.9 82.7
Paper Lamp Petal† 509 13.2 243.2
Paper Lamp Leaf† 300 1.4 476.0
Helmet (back middle) 214 3.8 4.0
Helmet (back left/right) 466 4.1 4.3
Helmet (front middle) 310 4.3 9.2
Helmet (front left/right) 835 15.7 17.8
Brown Chair 244 4.5 5.3
Red Chair 232 1.5 1.6

?1.5% †2%

Table 4.1: Running times for the algorithm on several examples. Solution
time is the amount of time for the algorithm to first arrive at the presented
surface as a solution. Total time is the amount of time passed until the
priority queue of covers is empty and the algorithm has exhausted its search
space. All of the examples were run with an area threshold of 3%, unless
otherwise specified.

main memory.

4.8 Robustness

We observe that the topology of a convex hull is easily affected by noise in
the input polyline. This can drastically affect the algorithm runtime as it
leads to chart fragmentation and can sometimes also influence the resulting
surface. To ensure a robust convex hull calculation, the algorithm expects
smooth and sufficiently well sampled polylines as input.

To further increase the robustness of the hull calculation, the algorithm
computes the center of mass C of the polyline boundary and slightly offsets
each vertex radially from it. This offsetting effectively makes the curve more

38



”convex”. This pre-processing drastically reduces the number of interior tri-
angles on the hull and improves stability. The offsetting also bends nearly all
planar portions of the boundary, which would otherwise allow for ambiguous
triangulations and possible numerical issues when computing the planarity
metric. Additional offsetting from a slightly shifted center is performed in
the rare cases where C is in the same plane as part of the boundary.

4.9 User Interface3

The algorithm requires as input a polyline boundary which is assumed to
be sampled from an underlying smooth 3D space curve. There are several
ways of specifying such a 3D space curve. For example, support for editing
NURBS curves is common in most commercial modeling packages (e.g., [1],
[3]). However, to make our modeling metaphor feasible for non-expert users,
a fast, sketch-based interface, based on [15], is available. Though easy to use,
this interface is sufficiently powerful to generate rich and complex examples.
Indeed, the majority of the examples in Chapter 5 were created using this
sketch-based interface.

In the interface, users can create the 3D boundary curves by first sketch-
ing them in one plane and then deforming them from a different viewpoint.
Additionally, similar to [15], the sketching system infers depth information
from a single sketch when the polyline is drawn over an existing model (Fig-
ures 4.10). The polyline is then set at a frontal distance to the model that
interpolates the two distances at the extremities. This feature is especially
useful for our garment examples (Section 5.1), where we drew the desired
boundaries on top of a 3D mannequin automatically keeping the boundaries
at the desired distance from the body.

The sketching system identifies darts as polyline sections that start from
a closed boundary loop. When a dart is detected, this section is duplicated
and added twice to the parent polyline while its orientation is switched,
forming a single closed boundary. Lastly, when the tip of a dart reaches

3The user interface for specifying boundaries is not a contribution of this thesis and is
discussed only for completeness.

39



Chapter 4. Constructing Developable Triangulations

(a) User’s Sketch (b) Extracted Boundary

Figure 4.10: Sketching a shoe overtop of an underlying model of a foot.

the same boundary again, the latter is split into two loops, enabling easy
generation of a boundary network.

Since a user’s sketch may have small amounts of noise due to jitter in
their hands, the interface smooths the sketch strokes by fitting a piecewise
B-spline curve. This curve is then sufficiently sampled to create a polyline
that is satisfactory for the algorithm.

4.10 Limitations

The theoretical setup of our algorithm assumes that the polyline boundaries
are sampled from a sufficiently smooth curve. As shown by the examples, the
algorithm remains robust even when this is not the case. As noted earlier,
though it is possible that a convex hull may not contain any valid charts,
such situations are extremely rare. If such a situation occurs the runtime is
significantly increased, but the method is still guaranteed to find a solution.

We also observe that there may exist smooth developable surfaces where
no ruling of the surface appears on the convex hull of its boundary. One
such example is provided by Wang [42]. Consider a non-intersecting smooth
curve C lying on the unit sphere centered at origin. C should be sufficiently
long so that its convex hull contains the origin in its interior. An offset
curve C ′ is then constructed by radially extruding C inwards towards the
origin (Figure 4.11(a)). A developable surface D with boundaries C and C ′

40



(a) (b) (c) (d) (e)

Figure 4.11: Boundary illustrating limitations. (a) Boundary curve defined
with its outer portion lying on the unit sphere centered at the origin. The
inward portion is created by extruding the outer portion radially towards
the origin; (b) A developable surface is defined by connecting correspond-
ing points on the outer and inner portions with straight lines; (c) The de-
velopable surface in (b) is entirely contained inside the convex hull of its
boundary. None of the rulings of the surface lie on the convex hull; (d) The
boundary is split into two parts by specifying a single ruling; (e) Each part
how has a convex hull containing rulings from the surface in (b).

is then defined by connecting together corresponding points on C and C ′

(Figure 4.11(b)). Since all rulings pass through the origin and the origin
lies inside the convex hull, no rulings lie on the convex hull. Therefore, D is
entirely contained inside the convex hull of its boundary (Figure 4.11(c)). In
cases like this, our method will not find the desired developable surface D.
However, adding one or two extra rulings (Figure 4.11(d)) would typically
break such surface into parts that partially lie on the respective boundary
hulls and are thus computable by the method (Figure 4.11(e)).

41



Chapter 4. Constructing Developable Triangulations

42



Chapter 5

Results

This chapter demonstrates the application of our method on a variety of
inputs coming from different application areas where developables are used.
The purple and white coloring of the surfaces shows the surface structure
with torsal developable surfaces shown in purple and interior triangles, cor-
responding to planar transition regions, in white.

5.1 Garments

Figures 5.1, 5.2, 5.3, and 5.4 show several garments generated from simple
sketches using our system. The modeling of each of the garments took only
a few minutes compared to hours using traditional garment modeling tools
such as [27] where the user is required to manually specify the 2D patterns
for the garment. Real garments at rest are always piecewise developable
since they are assembled from flat fabric pieces. Once worn by a character
or a mannequin they stretch slightly due to gravity and collisions. The
main challenge when modeling garments is obtaining the rest shape and
the corresponding 2D patterns. Once these exist, standard simulation or
procedural techniques can be applied to account for collisions and gravity
[1, 15, 27]. In the examples in this thesis, we focused on obtaining the rest
shapes. We then used a standard simulation tool, Autodesk 3ds Max with
Reactor [1], to visualise the garment behaviour for the poncho, skirt and
tanktop, and dress subject to the physical forces involved. As expected,
the results after simulation appear less stiff but remain very similar to the
developable rest shapes. We note that in all of the examples the garments
are generated using a network of seams. Each individual panel surrounded
by seams is a developable surface, but the surfaces are not developable across

43



Chapter 5. Results

(a) Boundary Net-
work

(b) Composite So-
lution

(c) Torsal Solution (d) Rendering of
(c)

Figure 5.1: Hat (modeled from six panels)

seams. Most of the examples in this section utilize darts as part of the input
polylines which are robustly handled by our method. In most cases, the
created surfaces are composite developable surfaces, each containing several
torsal developable surfaces connected by transition planar regions. Since
the created surfaces are analytically developable, the patterns (e.g., Figure
5.3(e)) can be used as-is to create reliable real-life replicas of the garments
and the garment texture exhibits no distortion.

(a) Boundary Network (b) Front Structure (c) Back Structure

(d) Simulation Result (e) Front Pattern (f) Back Pattern

Figure 5.2: Poncho (modeled from two panels, front and back)

44



(a) Boundary
Network

(b) Front
Structure

(c) Back Struc-
ture

(d) Simulation
Result

(e) Patterns

Figure 5.3: Tanktop (modeled from four panels) and Skirt (modeled from
two panels)

(a) Boundary
Network

(b) Front Struc-
ture

(c) Back Struc-
ture

(d) Sim-
ulation
Result

(e) Patterns

Figure 5.4: Dress (modeled from seven panels)

45



Chapter 5. Results

5.2 Architecture

Figures 5.5, 5.6, and 5.7 show examples of architectural structures generated
using our method. The Opera House model (Figure 5.5) was inspired by the
Sydney Opera House and created by duplicating a single developable surface
six times at different scales. The boundary for the developable surface was
generated using the sketch based system. The gazebo (Figure 5.6) is an
example of a complex composite surface which cannot be projected to a
plane without intersection and hence could not be easily generated by any
previous method for modeling developables. It was modeled by sampling
a B-spline curve with control vertices lying on the surface of a cone. The
skyscraper (Figure 5.7) was created from two surfaces, one for the body of
the building and one for the roof. The body surface is an example of a multi-
loop boundary that is easily handled by our method. Similar to the gazebo,
the roof of the skyscraper is a complex composite developable surface that
cannot be projected to a plane without intersection.

(a) Boundary (b) Surface Struc-
ture

(c) Rendering

Figure 5.5: Opera House

46



(a) Boundary (b) Surface Structure (c) Rendering

Figure 5.6: Gazebo

(a) Boundary (b) Surface
Structure

(c) Rendering

Figure 5.7: Skyscraper

47



Chapter 5. Results

5.3 Paper Design

Paper and foil are both commonly used materials used in the design of
home artifacts. The tulip lamp modeled from developable petals and leaves
(Figure 5.8) is mimicking Art-Nouveau paper lamps. The flower is created
by duplicating and scaling a developable petal surface. While the gold-
foil leaves are composite developable surfaces the paper petals are torsal
ruled surfaces and thus could be modeled by previous techniques, e.g. [40].
However, in contrast to these approaches, with our approach the user is not
required to specify the ruling directions or even know what ruling directions
are, allowing non-experts to use the system. Furthermore, the method,
not the user, is able to determine that a single torsal developable surface
interpolating the boundary exists, a non-trivial observation, making the
method more attractive for non-experts.

(a) Boundaries (b) Surface
Structures

(c) Rendering

Figure 5.8: Tulip paper lamp with developable paper petals and gold-foil
leaves

48



(a) Boundary
Network

(b) Smooth Solu-
tion

(c) Sharp Angles
Solution

(d) Rendering of
(c)

Figure 5.9: Helmet. (b) Solution obtained with a smoothness threshold of
60◦; (c) Solution obtained with a smoothness threshold of 100◦. By relaxing
the smoothness threshold, we create the appearance of metal ridges.

5.4 Leather, Wood Veneer, and Metal Goods

Figures 5.9, 5.10, 5.11, 5.12, and 5.13 show a variety of objects designed
from flat sheet materials: a metal helmet, chairs, a leather purse, a shoe,
and a glove. Despite the complexity of the modeled surfaces, no modeling
expertise was required when sketching them using free-form drawing. The
examples also show the control mechanisms available to the user, such as the
use of rulings to guide the construction of the purse as explained in Section
4.6.1 and the impact of smoothness threshold in the helmet example, where
we relaxed the threshold to create the appearance of metal ridges. The
shoe example (Figure 5.12) was inspired by a pair of actual woman’s shoes
(Figure 5.12(a)). The actual shoes were fabricated with a single piece of
leather and were developable almost everywhere, the only exception being
the tip where the leather was rounded using a heating process. To model
this effect using only developable surfaces, we inserted a rounded dart at the
tip of our boundary (5.12(b)). Like the garment examples (Section 5.1), all
of these results are analytically developable, permitting real life replicas to
be manufactured.

49



Chapter 5. Results

(a) Boundaries (b) Rendering

Figure 5.10: Chairs

(a) Boundary Network and
Specified Ruling

(b) Surface Structure of
(a)

(c) Rendering of (b)

Figure 5.11: Purse

50



(a) Reference Photo (b) Boundary (c) Surface Struc-
ture

(d) Rendering

Figure 5.12: Shoe

(a) Boundary Network (b) Surface Structure (c) Rendering

(d) Boundary Network (e) Surface Structure (f) Rendering

Figure 5.13: Glove

51



Chapter 5. Results

52



Chapter 6

Summary

This thesis presents an algorithm for computing developable surfaces in-
terpolating arbitrary 3D polygonal boundaries. Combining this algorithm
with an interface for editing 3D curves results in an easy to use system
for modeling composite developable surfaces in which users simply specify
the boundaries of each surface patch. Unlike many previous approaches for
modeling developable surfaces, significant geometric expertise is not pre-
requisite, which is an attractive option for non-expert users. However, the
method permits user interaction and optimization of different surface prop-
erties, granting more advanced users the ability to finely control the output
surface.

The algorithm is based on the linkage between between a developable
surface interpolating a boundary curve and the convex hull of that curve.
The method explores the space of possible interpolating developable surfaces
searching for solutions which have a desired set of shape properties. The
presented approach is fairly generic and can be easily extended to handle
additional shape metrics. The runtime of the algorithm is strongly affected
by the complexity of the input boundary, and to a lesser degree, the number
of vertices on the boundary. In practice, the overall runtime is low, ranging
from a few seconds for simple boundaries to a few minutes for more complex
boundaries.

As demonstrated by the numerous examples in Chapter 5, the method
robustly computes developable surfaces interpolating a vast array of input
boundaries and can be used to model an assortment of developable shapes.
Darts are directly supported by the method, making it especially practical
for garment design setups. In all of the presented examples, since the results
are analytically developable, the flattened 2D patterns are available. This

53



Chapter 6. Summary

permits real replicas of the shapes to be fabricated.

54



Chapter 7

Future Work

The algorithm presented in Chapter 4 presented smoothness, predictabil-
ity, and fairness as desirable surface characteristics. These characteristics
were used to guide the algorithm towards an interpolating surface that op-
timized these traits. However, one could consider alternative properties to
optimize for. For example, Wang and Tang [40] identify minimal surface
area, minimal bending energy, minimal mean curvature variation, and mini-
mal normal variation as optimization objectives. Exploring these and other
surface metrics would permit additional user control and further improve
the algorithm.

Given a network of boundary curves, the algorithm runs separately on
each surface patch, returning a developable surface interpolating each. The
resulting composite developable surface thus has C0 continuity across its
seam lines and the surface is not developable across seams. However, in
certain designs, higher orders of continuity are required. For example, C2

continuity is necessary to ensure continuous highlights and reflection lines.
One approach to support higher geometric continuity would be to modify the
algorithm so that it is globally aware of all of the patches, not just locally
aware of its current patch. When initially selecting charts on the convex
hull of a patch, it could favour charts having a corresponding “continuation
chart” on the convex hull of an adjacent patch.

Additional support for singularities would be an interesting endeavour.
Though the algorithm currently supports darts as a mechanism for intro-
ducing singular lines, less restrictive results may be achieved by exploring
other types of singularities (e.g., crescent singularities and stretching ridges
[26]).

Finally, formalized user studies in which individuals are tasked with de-

55



Chapter 7. Future Work

signing developable objects would be beneficial. In addition to helping iden-
tify strong and weak points of the user interface, user studies could possibly
provide a notion of the amount of design experience required to use the
system.

56



Bibliography

[1] Autodesk 3ds Max. http://www.autodesk.com/3dsmax.

[2] Sung Joon Ahn. Least Squares Orthogonal Distance Fitting of Curves
and Surfaces in Space (Lecture Notes in Computer Science). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2004.

[3] Autodesk AliasStudio. http://www.autodesk.com/aliasstudio.

[4] Günter Aumann. Interpolation with developable Bézier patches. Com-
puter Aided Geometric Design, 8(5):409–420, November 1991.

[5] Günter Aumann. Degree elevation and developable Bézier surfaces.
Computer Aided Geometric Design, 21(7):661–670, 2004.

[6] John. G. Benjafield. The developmental point of view. A history of psy-
chology. Needham Heights, MA: Simon and Schuster Company, 1996.

[7] bluffton.edu. http://www.bluffton.edu/~sullivanm/ohio/

cleveland/gehry/0067minuslights.jpg.

[8] Pengbo Bo and Wenping Wang. Geodesic-controlled developable sur-
faces for modeling paper bending. Eurographics (Computer Graphics
Forum), 26(3), 2007.

[9] burdamode.com. http://www.burdamode.com/Free_Downloads,

1333669-1413206-1333668,enEN.html.

[10] Catia. http://www.3ds.com/products-solutions/plm-solutions/

catia/all-products/domain/Mechanical_Design/product/SMD.

57



Bibliography

[11] Julie Steele Chalfant. Analysis and design of developable surfaces for
shipbuilding. Master’s thesis, Massachusetts Institute of Technology,
June 1997.

[12] H.-Y. Chen, I.-K. Lee, Stefan Leopoldseder, Helmut Pottmann, Thomas
Randrup, and Johannes Wallner. On surface approximation using de-
velopable surfaces. Graphical Models and Image Processing, 61(2):110–
124, 1999.

[13] Chih-Hsing Chu and Carlo H. Séquin. Developable Bézier patches:
properties and design. Computer-Aided Design, 34(7):511–527, 2002.

[14] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-
troduction to Algorithms. MIT Press, 1990.

[15] Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla
Sheffer, and Marie-Paule Cani. Virtual garments: A fully geometric
approach for clothing design. Computer Graphics Forum (Proc. Euro-
graphics), 25(3):625–634, Sep 2006.

[16] Manfredo Perdigao do Carmo. Differential Geometry of Curves and
Surfaces. Prentice-Hall, 1976.

[17] William H. Frey. Boundary triangulations approximating developable
surfaces that interpolate a closed space curve. International Journal of
Foundations of Computer Science, 13:285–302, 2002.

[18] William H. Frey. Modeling buckled developable surfaces by triangula-
tion. Computer-Aided Design, 36(4):299–313, 2004.

[19] Carl Friedrich Gauss. Disquisitiones generales circa superficies curvas.
Comm. Soc. Reg. Sc. Gott. Rec., 1828.

[20] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-
developable mesh segmentation. Computer Graphics Forum (Proc. Eu-
rographics), 24(3):581–590, 2005.

58



[21] Olga A. Karpenko and John F. Hughes. Smoothsketch: 3D free-form
shapes from complex sketches. In SIGGRAPH ’06: ACM SIGGRAPH
2006 Papers, pages 589–598, New York, NY, USA, 2006. ACM Press.

[22] Erwin Kreyszig. Differential Geometry. Dover Publications, 1991.

[23] Steven R. Lay. Convex Sets and their Applications. Wiley, New York,
1972.

[24] Stefan Leopoldseder and Helmut Pottmann. Approximation of de-
velopable surfaces with cone spline surfaces. Computer-aided Design,
30(7):571–582, 1998.

[25] Yang Liu, Helmut Pottmann, Johannes Wallner, Yong-Liang Yang, and
Wenping Wang. Geometric modeling with conical meshes and devel-
opable surfaces. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
pages 681–689, New York, NY, USA, 2006. ACM Press.

[26] Alexander Lobkovsky, Sharon Gentges, Hao Li, David Morse, and T.T.
Witten. Scaling properties of stretching ridges in a crumpled elastic
sheet. Science, 270(5241):1482–1485, December 1995.

[27] Autodesk MayaCloth. http://caad.arch.ethz.ch/info/maya/

manual/MayaCloth.

[28] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes
using strip-based approximate unfolding. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 259–263, New York, NY, USA, 2004.
ACM Press.

[29] Martin Peternell. Developable surface fitting to point clouds. In Com-
puter Aided Geometric Design, pages 785–803, 2004.

[30] Helmut Pottmann and Johannes Wallner. Approximation algorithms
for developable surfaces. Computer Aided Geometric Design, 16(6):539–
556, July 1999.

59



Bibliography

[31] Helmut Pottmann and Johannes Wallner. Computational Line Geom-
etry. Springer Verlag, 2001.

[32] Kenneth Rose, Alla Sheffer, Jamie Wither, Marie-Paule Cani, and Boris
Thibert. Developable surfaces from arbitrary sketched boundaries. Eu-
rographics Symposium on Geometry Processing, pages 163 – 172, 2007.

[33] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 2003.

[34] Vyacheslav D. Sedykh. Structure of the convex hull of a space curve.
Journal of Mathematical Sciences, 33(4):1140–1153, 1986.

[35] Idan Shatz, Ayellet Tal, and George Leifman. Paper craft models from
meshes. The Visual Computer, 22(9-11):825–834, September 2006.

[36] Dennis R. Shelden. Digital surface representation and the constructibil-
ity of Gehry’s architecture. MIT, 2002.

[37] Meng Sun. A technique for constructing developable surfaces. Master’s
thesis, University of Toronto, June 1995.

[38] synfo.com. http://www.synfo.com/theyachtreport/articles/

Explorer1.jpg.

[39] Charlie C.L. Wang and Kai Tang. Achieving developability of a polyg-
onal surface by minimum deformation: a study of global and local op-
timization approaches. The Visual Computer, 20(8-9):521–539, 2004.

[40] Charlie C.L. Wang and Kai Tang. Optimal boundary triangulations of
an interpolating ruled surface. Journal of Computing and Information
Science in Engineering, ASME Transactions, 5(4):291–301, 2005.

[41] Charlie C.L. Wang, Yu Wang, and Matthew Yuen. On increasing the
developability of a trimmed nurbs surface. Engineering with Computers,
20(1):54–64, March 2004.

[42] Wenping Wang. Personal Communication, 2007.

60



[43] Hitoshi Yamauchi, Stefan Gumhold, Rhaleb Zayer, and Hans-Peter Sei-
del. Mesh segmentation driven by gaussian curvature. The Visual Com-
puter, 21(8-10):649–658, September 2005.

61


